
International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

15
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

Learning and Teaching Programming:
A Review and Discussion

Anthony Robins, Janet Rountree, and Nathan Rountree
Computer Science, University of Otago, Dunedin, New Zealand

ABSTRACT
In this paper we review the literature relating to the psychological/educational study of
programming. We identify general trends comparing novice and expert programmers,
programming knowledge and strategies, program generation and comprehension, and objec t-
oriented versus procedural programming. (We do not cover research relating specifically to
other programming styles.) The main focus of the review is on novice programming and topics
relating to novice teaching and learning. Various problems experienced by novices are
identified, including issues relating to basic program design, to algorithmic complexity in
certain language features, to the ‘‘fragility’’ of novice knowledge, and so on. We summarise this
material and suggest some practical implications for teachers. We suggest that a key issue that
emerges is the distinction between effective and ineffective novices. What characterises
effective novices? Is it possible to identify the specific deficits of ineffective novices and help
them to become effective learners of programming?

INTRODUCTION

Programming is a very useful skill and can be a rewarding career. In recent
years the demand for programmers and student interest in programming
have grown rapidly, and introductory programming courses have become
increas- ingly popular. Learning to program is hard however. Novice
programmers suffer from a wide range of difficulties and deficits.
Programming courses are generally regarded as difficult, and often have the
highest dropout rates. It is generally accepted that it takes about 10 years of
experience to turn a novice into an expert programmer (Winslow, 1996).
What are the properties of expert programmers? What resources and
processes are involved in creating or understanding a program? Since the
1970s there has been an interest in questions such as these, and in
programming as a cognitive process. The literature relating to such topics is
extensive, and was especially active in the late 1980s. A more recent trend is
an emphasis on studies of object-oriented (OO) programming and its
relationship to the traditional procedural approach.
Our interest in this broad field is focused by practical considerations. We

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

16
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

teach a computer science introductory programming course, the kind often
known as ‘‘CS1’’. Our goal is to provide the most effective learning
environment and experience that we can for our students. Consequently, we
are interested in understanding the processes of learning and teaching
programming. Why is programming hard to learn? What are the cognitive
requirements of the task? Are there successful and unsuccessful strategies for
learners? What can we as teachers do to most effectively support novice
programmers? The purpose of this paper is to review research relating to
novices learning a first programming language. While some comparison of
the procedural and OO programming styles is included, we do not cover
research relating specifically to other programming styles (such as, e.g.,
functional or logic programming). We briefly explore issues relating to
teaching, and a main goal of this review is to identify practical implications for
teachers.
We begin with an overview (Section 2) of research into programming,
identifying several significant trends. We then focus (Section 3) on novice
programmers, exploring their capabilities and typical problems, their char-
acteristic behaviours, and (Section 4) factors relating to course design and
teaching. In the concluding discussion (Section 5) we summarise this material
and suggest some practical implications for teachers. We also propose a
framework which makes explicit some of the relationships between
important topics explored in the literature, and highlight the significance of
the distinction between effective and ineffective novices, in particular
focusing on the strategies that they employ.

OVERVIEW

Studies of programming can be generally divided into two main categories,
those with a software engineering perspective, and those with a psychological/
educational perspective. Software engineering based studies typically focus

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

17
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

on experienced or professional programmers, often working in teams, and
how to develop software projects effectively (see, e.g., Boehm, 1981; Brooks,
1995; Humphrey, 1999; Mills, 1993; Perlis, Sayward, & Shaw, 1981). Our
interest is in novices and the initial development of individual programming
skills. Although early learning should of course include the basics of good
software engineering practice, learning to program is usually addressed from a
psychological/educational perspective, and it is this literature that is the focus of
the current review. Research has focused on topics such as program
comprehension and generation, mental models, and the knowledge and skills
required to program.
Two early books (Sackman, 1970; Weinberg, 1971) were significant in
identifying programming as an area of psychological interest and stimulating
research in the field. Sheil (1981) is an often cited early review, which very
clearly sets out and discusses a range of methodological issues (see also
Gilmore, 1990a). More recent books include Soloway and Spohrer (1989),
which is explicitly focused on the novice programmer, and Hoc, Green,
Samurçay, and Gillmore (1990). Drawing on these and other sources, we can
identify the following general trends and topics.

Experts Versus Novices
It is generally agreed (Winslow, 1996) that it takes roughly 10 years to turn a
novice into an expert programmer. There are several breakdowns of this
continuum into stages, the most commonly cited being the five stages
proposed by Dreyfus and Dreyfus (1986): novice, advanced beginner,
competence, proficiency, and expert.
There are many studies of ‘‘expert’’ programmers (although some of these are
based on graduate students who are probably only competent or proficient on
the scale noted above). Studies of experts focus in particular on the
sophisticated knowledge representations and problem solving strategies that

they can employ (see, e.g., Détienne, 1990; Gilmore, 1990b; Visser & Hoc,
1990). In a survey of program understanding, von Mayrhauser and Vans
(1994) summarise studies (in particular Guindon, 1990) noting that experts:
have efficiently organised and specialised knowledge schemas; organise their
knowledge according to functional characteristics such as the nature of the
underlying algorithm (rather than superficial details such as language syntax); use
both general problem solving strategies (such as divide-and-conquer) and

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

18
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

specialised strategies; use specialised schemas and a top-down, breadth-first
approach to efficiently decompose and understand programs; and are flexible
in their approach to program comprehension and their willingness to abandon
questionable hypotheses. Expert knowledge schemas also have associated
testing and debugging strategies (Linn & Dalbey, 1989). Rist summarises
many of the advantages of the expert programmer as follows:
Expertise in programming should reduce variability in three ways: by defining
the best way to approach the design task, by supplying a standard set of
schemas to answer a question, and by constraining the choices about execution
structure to the ‘best’ solutions. (Rist, 1995, p. 552)
Many of the characteristics of expert programmers are also characteristics of
experts in general, as explored, for example, in other fields such as chess or
mathematics. Experts are good at recognising, using and adapting patterns or
schemas (and thus obviating the need for much explicit work or computation).
They are faster, more accurate, and able to draw on a wide range of examples,
sources of knowledge, and effective strategies.
By definition novices do not have many of the strengths of experts. Studies
reviewed by Winslow (1996), for example, have concluded that novices are
limited to surface and superficially organised knowledge, lack detailed mental
models, fail to apply relevant knowledge, and approach programming ‘‘line by
line’’ rather than using meaningful program ‘‘chunks’’ or structures. Studies
collected in Soloway and Spohrer (1989) outline deficits in novices’ under-
standing of various specific programming language constructs (such as vari-
ables, loops, arrays and recursion), note shortcomings in their planning and
testing of code, explore more general issues relating to the use of program
plans, show how prior knowledge can be a source of errors, and more. Novices
are ‘‘very local and concrete in their comprehension of programs’’
(Wiedenbeck, Ramalingam, Sarasamma, & Corritore, 1999, p. 278). Since our
main interest is in novices and the early stages of learning, we return to this
topic in more detail in Section 3.

Knowledge Versus Strategies
Davies (1993) distinguishes between programming knowledge (of a declar-
ative nature, e.g., being able to state how a ‘‘for’’ loop works) and pro-
gramming strategies (the way knowledge is used and applied, e.g., using a
‘‘for’’ loop appropriately in a program).
Obviously, programming ability must rest on a foundation of knowledge

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

19
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

about computers, a programming language or languages, programming tools
and resources, and ideally theory and formal methods. Typical introductory
programming textbooks devote most of their content to presenting knowledge
about a particular language (elaborated with examples and exercises), and in our
experience typical introductory programming courses are also ‘‘knowledge
driven’’.
The majority of studies of programming have likewise focused on the content
and structure of programming knowledge, see, for example, Brooks (1990)
introducing a special issue of International Journal of Man-Machine Studies
(Vol. 33, No. 3) devoted to this topic. One kind of representation is usually
identified as central, namely a structured ‘‘chunk’’ of related knowledge,
typically called a schema or plan.1 For example, most program- mers will have
a schema for finding the average of the values stored in single dimensional
array. Ormerod (1990) suggests that ‘‘A schema [.. .] consists of a set of
propositions that are organised by their semantic content’’, and goes on to
further distinguish plans, frames and scripts (see also Anderson, 2000).
As used in the literature, however, there is considerable flexibility and overlap
in the interpretation of these terms. In an observation which captures both the
central role of the schema/plan, and the vagueness of the definition and
terminology, Rist notes:
There is considerable evidence in the empirical study of programming that the
plan is the basic cognitive chunk used in program design and understanding.
Exactly what is meant by a program plan, however, has varied considerably
between authors. (Rist, 1995, p. 514)
We will follow the usage adopted by each author when discussing the work of
others, and ourselves use the term schema to refer to this general kind of
representation.
As various authors, and in particular Davies (1993) have pointed out,
however, knowledge is only part of the picture:
Much of the literature concerned with understanding the nature of
programming skill has focused explicitly on the declarative aspects of
programmers’ knowledge. This literature has sought to describe the nature of
stereotypical programming knowledge structures and their organization.
However, one major limitation of many of these knowledge-based theories

is that they often fail to consider the way in which knowledge is used or

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

20
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

applied. Another strand of literature is less well represented. This literature deals
with the strategic aspects of programming skill and is directed towards an
analysis of the strategies commonly employed by programmers in the
generation and comprehension of programs. (Davies, 1993, p. 237)
For example, Widowski and Eyferth (1986) compared novice and expert
programmers as they worked to understand programs which were either
conventionally or unusually structured. Subjects could view the code one line
at a time, and a ‘‘run’’ was defined as a sequential pass over a section of
code. Experts tended to read conventional programs in long but infrequent
runs (Widowski & Eyferth suggest they are employing a top-down concep-
tually driven strategy), and read unusual programs in short frequent runs
(suggesting a bottom-up heuristic strategy). Novices tended to read both
conventional and unconventional programs in the same way. The authors
suggest that experts (even without relevant knowledge structures or plans) had
more flexible strategies, and were better able to recognise and respond to
novel situations.
Davies suggests that research should go beyond attempts to simply
characterise the strategies employed by different kinds of programmer, and
focus on why these strategies emerge, i.e. on ‘‘exploring the relationship
between the development of structured representations of programming
knowledge and the adoption of specific forms of strategy’’ (Davies, 1993,
p. 238). In his subsequent review, Davies identifies as significant strategies
relating to the general problem domain, the specific programming task, the
programming language, and the ‘‘interaction media’’ (programming tools).
We cover much of the material reviewed in the discussion of program
comprehension and generation below.

Comprehension Versus Generation
Another significant distinction in the literature is between studies that explore
program comprehension (where given the text of a program subjects have to
demonstrate an understanding of how it works), and those that focus on
program generation (where subjects have to create a part of or a whole
program to perform some task/solve some problem).
Brooks (1977, 1983) was among the first to propose a model of program
comprehension. The model is set in the context of various knowledge domains,
such as the original problem domain (e.g., a ‘‘cargo-routing’’ problem), which

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

21
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

i h i

h

is transformed and represented as values and structures in intermediate
domains, and finally instantiated in the data structures and algorithms of a
program in the programming domain.2 Brooks suggests that programming
involves formulating mappings from the problem domain (via intermediate
domains) into the programming domain – a process which requires knowledge of
both the structure of the domains and of the mappings between them.
Brooks describes program comprehension as a ‘‘top-down’’ and ‘‘hypothesis-
driven’’ process. Brooks suggested that rather than studying programs line by
line, subjects (assumed to be ‘‘expert’’ programmers) form hypotheses based
on high-level domain and programming knowledge. These hypotheses are
verified or falsified by searching the program for markers/ ‘‘beacons’’ which
indicate the presence of specific structures or functions. Subjects may vary
with respect to their domain knowledge, programming knowledge, and
comprehension strategies. This fairly detailed model is able to account, Brooks
claims, for observed variation in comprehension performance arising from such
factors as the nature of the problem domain, variations in the program text, the
effects of different comprehension tasks (e.g., modification vs. debugging) and
the effects of individual differences. Davies (1993) reviews a range of studies
that support Brooks’ model. Other models of program comprehension are
reviewed in von Mayrhauser and Vans (1994), including those proposed by
Shneiderman and Mayer (1979), Soloway and Ehrlich (1984), Soloway et al.
(1988), Letovsky (1986) and Pennington (1987a, b). Wiedenbeck et al. (1999)
note that subjects’ models of a program can be influenced by different task
requirements, for example, modifying a program rather than simply
answering questions about it.
Rist (1995) presents a comprehensive model of program generation (see also Rist,
1986a, 1986b, 1989, 1990). Knowledge is represented using nodes in internal
memory (working, episodic, and semantic) or external memory (the program
specification, notes, or the program itself). A node encodes an ‘‘action’’ that may
range from a line of code, to chunks such as loops, to one or more routines of
arbitrary size. Nodes are indexed using a tuple of the form role, goal, object , for
example, a read loop could be indexed as read, stream, – . Nodes also have
four ‘‘ports’’, :use, :make, :obey and :control, which allow them to be linked with
respect to control flow and data flow. A program is built by starting

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

22
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

h i with a search cue such as find, average, rainfall , and retrieving from memory
any matching node. Nodes can contain cues, so cues within the newly linked
node are then expanded and linked in the same way. Linked systems of code that
produce a specific output called plans, and common/useful plans are assumed to
be stored by experts as schema-like knowledge structures.
Using these underlying knowledge representations a number of different
design strategies can be implemented. A design strategy (in this specific
definition) consists of a starting cue, a direction, a level, and a type of link to
explore next (all design decisions are local, with no ‘‘supervising controller’’).
By varying these conditions within the model a range of different programmer
strategies (in the general sense of word as discussed above) can be
implemented, including typical novice and expert strategies. Experts can
typically retrieve relevant plans from memory, and then generate code from
the plan in linear order (from initialisation, to calculation, to output). Novices
must typically create plans. This involves ‘‘focal expansion’’ – reasoning
‘‘backwards’’ from the goal to the focus (critical calculation/step/transaction),
and then to the other necessary elements. Code generation begins with the
central calculation, and builds the initialisations and other elements around it.
Rist notes that a realistic design process will involve ‘‘the interaction between
a search [design] strategy and opportunistic design, plan creation and retrieval,
working memory limitations, and the structure of the specification and the
program’’ (Rist, 1995, p. 508). (Such practical considerations, especially the
limited capacity of working memory, are also addressed in the ‘‘parsing-
ginsarp’’ model of program generation (Green, Bellamy, & Parker, 1987).)
Rist’s model has been implemented in a program which generates
Pascal programs from English descriptions.
Studies and models of comprehension are more numerous than studies and
models of generation, possibly because comprehension is a more constrained
task and subject’s behaviour is therefore easier to interpret and describe. Clearly
the topics are related, not least because during generation the development,
debugging (and in the long term maintenance) of code necessarily involves
reviewing and understanding it. Although we might therefore expect that these
abilities will always be highly correlated, the situation may in fact be more
complex:

Studies have shown that there is very little correspondence between the
ability to write a program and the ability to read one. Both need to be taught

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

23
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

þþ

þþ

along with some basic test and debugging strategies. (Winslow, 1996, p. 21)
Procedural Versus Object-Oriented
A number of recent studies explore issues relating to the object-oriented (OO)
programming paradigm (e.g., C , Java), particularly in contrast to the most
common procedural paradigm (e.g., Pascal, C). In general such studies should
be seen in the context that there is not likely to be any universally ‘‘best’’
programming notation for comprehension, but that a given notation may assist
the comprehension of certain kinds of information by highlighting it in some
way in the program code (Gilmore & Green, 1984).

Détienne (1997) reviews claims regarding the ‘‘naturalness, ease of use, and
power’’ of the OO approach. Such claims are based on the argument that
objects are natural features of problem domains, and are represented as
explicit entities in the programming domain, so the mapping between domains is
simple and should support and facilitate OO design/programming. The papers
reviewed do not support this position.3 They show that identifying objects is
not an easy process, that objects identified in the problem domain are not
necessarily useful in the program domain, that the mapping between domains is
not straightforward, and that novices need to construct a model of the
procedural aspects of a solution in order to properly design objects/classes.
While the literature on expert programmers is more supportive of the
naturalness and ease of OO design it also shows that expert OO programmers
use both OO and procedural views of the programming domain, and switch

between them as necessary (Détienne, 1997). Similarly Rist (1995) describes
the relationship between plans (a fundamental unit of program design, as
discussed above) and objects as ‘‘orthogonal’’.
Plans and objects are orthogonal, because one plan can use many objects and
one object can take part in many plans. (Rist, 1995, pp. 555–556)
Rist (1996) suggests that OO programming is not different, ‘‘it is more’’, be-
cause OO design adds the overheads of class structure to a procedural system.
Two recent studies have explored the problems encountered by novices in
detail. Wiedenbeck et al. (1999) studied the comprehension of procedural and OO
programs in subjects in their second semester of study at university.
Subjects were learning either Pascal or C , and were tested on programs
written in the language they were learning (but carefully designed so that

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

24
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

þþ

þþ þþ

versions in each language were equivalent). For short programs (one class in C
) there was no significant difference in overall comprehension between
languages, though the OO subjects were better specifically at understanding
the function of the program. Results were completely different when longer
programs (multiple classes) were used, with procedural programmers doing
better than OO programmers on all measures. The authors conclude that:
The distributed nature of control flow and function in an OO program may
make it more difficult for novices to form a mental representation of the
function and control flow of an OO program than of a corresponding
procedural program . . . (Wiedenbeck et al., 1999, p. 276)
We tend to believe that the comprehension difficulties that novices
experienced with a longer OO program are attributable partly to a longer
learning curve of OO programming and partly to the nature of larger OO
programs themselves. (Wiedenbeck et al., 1999, p. 277)
This view does not support the claim that the OO paradigm is a ‘‘natural’’ way
of conceptualising and modelling real world situations:
These results suggest that the OO novices were focusing on program model
information, in opposition to claims that he OO paradigm focuses the
programmer on the problem domain by modeling it explicitly in the program
text. (Wiedenbeck et al., 1999, p. 274)
Similar conclusions are reached by Wiedenbeck and Ramalingam (1999) in a
study of C students comprehending small programs in C and C . Once again
no difference in overall measures of comprehension were found. Comparing
specific measures, however, suggested that subjects tend to develop
representations of (small) OO programs that are strong with respect to program
function, but weaker with respect to control flow and other program related
knowledge. In contrast subjects’ representations of procedural programs were
stronger in program related knowledge. Results for the better performing half of
subjects were then compared to those of the worse performing half. For the
better performing group no difference was found. All differences between the OO
and procedural conditions were attributable to the worse performing subjects.

Burkhardt, Détienne, and Wiedenbeck (1997) proposed a theory of OO
program comprehension (including the models constructed by programmers
and the effect of expertise on the construction of models) within which many of
these factors can be explored.
Other

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

25
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

A range of other topics have been addressed. Early studies in particular
explored particular kinds of language structure or notation (such as the use of
GOTOs vs. nested if-then-else structures), various elements of program- ming
practice (such as flow charting and code formatting), and common tasks such
as debugging and testing – see, for example, the review in Sheil (1981).
Bishop-Clark (1995) reviews studies of the effects of cognitive style and
personality on programming. While no clear trends emerge Bishop-Clark
suggests that the common use of a single ‘‘unitary’’ measure of programming
success (such as a score or grade) may obscure more subtle effects which
could be revealed by studies that relate style and personality to ‘‘four stages of
computer programming’’, namely problem representation, design, coding and
debugging.

NOVICE PROGRAMMERS

From our perspective as teachers we are most interested in the question of how
novices learn to program. This area of interest is set in the general context of
cognitive psychology, and topics such as knowledge representation, problem
solving, working memory, and so on.
[Our review] highlights the approaches to understanding human cognition
which are of special relevance to programming research. Concepts that recur
in many cognitive theories include schemas, production systems, limited
resources, automation of skills with practice, working memory, semantic
networks and mental models. Most employ propositional representations of
one form or another, in which information is represented at a symbolic level.
(Ormerod, 1990, p. 77)
Readers unfamiliar with this background can find an introduction in texts such as
Anderson (2000).
We now explore topics relating to novice programming in more depth,
particularly with respect to program generation. In the context of the literature
reviewed above studies of novices and of program generation are in the
minority. Even so they form a sizeable body of work, in particular the papers
collected in Soloway and Spohrer (1989) Studying the novice programmer are a
major resource.
The Task
Learning to program is not easy. In a good overview of what is involved du

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

26
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

Boulay (1989) describes five overlapping domains and potential sources of
difficulty that must be mastered. These are: (1) general orientation, what
programs are for and what can be done with them; (2) the notional machine, a
model of the computer as it relates to executing programs; (3) notation, the
syntax and semantics of a particular programming language; (4) structures,
that is, schemas/plans as discussed above; (5) pragmatics, that is, the skills of
planning, developing, testing, debugging, and so on.
None of these issues are entirely separable from the others, and much of the
‘shock’ [.. .] of the first few encounters between the learner and the system are
compounded by the student’s attempt to deal with all these different kinds of
difficulty at once. (du Boulay, 1989, p. 284)
Rogalski and Samurçay summarise the task as follows:
Acquiring and developing knowledge about programming is a highly complex
process. It involves a variety of cognitive activities, and mental
representations related to program design, program understanding, mod- ifying,
debugging (and documenting). Even at the level of computer literacy, it
requires construction of conceptual knowledge, and the structuring of basic
operations (such as loops, conditional statements, etc.) into schemas and
plans. It requires developing strategies flexible enough to derive benefits
from programming aids (programming environ- ment, programming methods).
(Rogalski & Samurçay, 1990, p. 170)
Green (1990, p. 117) suggests that programming is best regarded not as
‘‘transcription from an internally held representation’’, or in the context of
‘‘the pseudo-psychological theory of ‘structured programming’’’, but as an
exploratory process where programs are created ‘‘opportunistically and
incrementally’’. A similar conclusion is reached by Visser (1990) and by Davies:
. . . emerging models of programming behavior suggest an incremental problem-
solving process where strategy is determined by localized problem-solving
episodes and frequent problem re-evaluation. (Davies, 1993, p. 265)
An emphasis on opportunistic exploration seems particularly appropriate
when considering novice programming.
Mental Models and Processes
Writing a program involves maintaining many different kinds of ‘‘mental
model’’ (see, e.g., Johnson-Laird, 1983), quite apart from a model/knowledge
of the programming language itself.
Programs are usually written for a purpose – with respect to some task,
problem, or specification. Clearly an understanding/mental model of this

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

27
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

problem domain must precede any attempt to write an appropriate program,
see, for example, Brooks (1977, 1983), Spohrer, Soloway, and Pope
(1989), Davies (1993), Rist (1995). Taking this point to its logical conclusion
Deek, Kimmel, and McHugh (1998) describe a first year computer science
course based on a problem solving model, where language features are
introduced only in the context of the students’ solutions to specific problems.
Other important mental models can be identified. Many studies have noted the
central role played by a model of (an abstraction of) the computer, often

called a ‘‘notional machine’’ (Can~nas, Bajo, & Gonzalvo, 1994; du Boulay,
1989; du Boulay, O’Shea, & Monk, 1989; Hoc & Nguyen-Xuan, 1990; Mayer,
1989; Mendelsohn, Green, & Brna, 1990).
The notional machine an idealized, conceptual computer whose properties are
implied by the constructs in the programming language employed. (du Boulay
et al., 1989, p. 431)
That the notional machine is defined with respect to the language is an
important point, the notional machine underlying Pascal is very different from
the one underlying Prolog.
The purpose of the notional machine is to provide a foundation for
understanding the behaviour of running programs.
[a major issue] is the need to present the beginner with some model or
description of the machine she or he is learning to operate via the given
programming language. It is then possible to relate some of the troublesome
hidden side-effects to events happening in the model, as it is these hidden, and
visually unmarked, actions which often cause problems for beginners.
However, inventing a consistent story that describes events at the right level of
detail is not easy. (du Boulay, 1989, pp. 297–298)
du Boulay et al. (1989) suggest that to be useful the notional machine should
be simple, and supported with some kind of concrete tool which allows the
model to be observed. In short, a ‘‘glass box’’ instead of a ‘‘black box’’.
The programmer must also develop a design/model of the program itself and
how it will run.
A running program is a kind of mechanism and it takes quite a long time to
learn the relation between a program on the page and the mechanism it
describes. (du Boulay, 1989, p. 285)
du Boulay likes building a model of a program based on the program text
trying to understand how a car engine works based on a diagram of the engine.
The task is much complicated by the many different ways of viewing a

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

28
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

program, such as linear order, control flow, data flow, modular structure, or
possibly object based structure (see, e.g., Rist, 1995). Corritore and
Wiedenbeck (1991) showed that novices (comprehending short Pascal
segments) had more difficulty with data flow and function/purpose questions
than with control flow, and had least problems with ‘‘elementary operations’’
such as assignment to a variable. Wiedenbeck, Fix, and Scholtz (1993)
describe expert mental models of computer programs as founded on the
recognition of basic patterns/schemas which are hierarchical and multi-
layered, with explicit mappings between layers, well connected internally, and
well founded in the program text. Novice representations generally lacked
these characteristics, but in some cases were working towards them.
Complicating this picture still further, we suggest, is the distinction between
the model of the program as it was intended, and the model of the program
as it actually is. Designs can be incorrect, unpredicted interactions can occur,
bugs happen. Consequently, programmers are frequently faced with the need to
understand a program that is running in an unexpected way. This requires the
ability to track or ‘‘hand trace’’ code to build a model of the program an
predict its behaviour (which Perkins, Hancock, Hobbs, Martin, and Simmons
(1989) call ‘‘close tracking’’ and describe as ‘‘taking the computer’s point of
view’’). The process of building such a model (which itself supposes models of
both the features of the language and the behaviour of the machine) is a central
part of program comprehension, and of the planning, testing and debugging
involved in program generation.
Some bugs are minor and can be fixed without change to the program model.
In situations where diagnosing a bug exposes a flaw in the underlying model,
however, debugging the code may result in major conceptual changes.
Pennington and Grabowski (1990) state that diagnosis is the most difficult
aspect of debugging, with subsequent corrections being (at least in the case of
simple programs where a large re-design is not required) comparatively easier.
Gray and Anderson (1987) call alterations to program code ‘‘change
episodes’’, and suggest that they are rich in information, helping to reveal the
programmers models, goals and planning activities.

Novice Capabilities and Behaviour
Novices lack the specific knowledge and skills of experts, and this perspective
pervades much of the literature. Various studies as reviewed by Winslow
(1996) concluded that novices are: limited to surface knowledge (and organise

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

29
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

knowledge based on superficial similarities); lack detailed mental models; fail
to apply relevant knowledge; use general problem solving strategies (rather
than problem specific or programming specific strategies); and approach
programming ‘‘line by line’’ rather than at the level of meaningful program
‘‘chunks’’ or structures. In contrast to experts, novices spend very little time
planning. They also spend little time testing code, and tend to attempt small
‘‘local’’ fixes rather than significantly reformulating programs (Linn & Dalbey,
1989). They are frequently poor at tracing/tracking code (Perkins et al.,
1989). Novices can have a poor grasp of the basic sequential nature of
program execution: ‘‘What sometimes gets forgotten is that each instruction
operates in the environment created by the previous instructions’’ (du Boulay,
1989, p. 294). Their knowledge tends to be context specific rather than general
(Kurland, Pea, Clement, & Mawby, 1989). There is no evidence that learning
programming fosters an improvement in general problem solving skills,
although it may improve (or in turn be improved by prior experience with)
very closely related skills such as translating word problems into equations
(Mayer, Dyck, & Vilberg, 1989).
Some of this rather alarming list relates to aspects of knowledge, and some to
strategies. Perkins and Martin (1986) note that ‘‘knowing’’ is not necessarily
clear cut, and novices that appear to be lacking in certain knowledge may in
fact have learned the required information (e.g., it can be elicited with hints).
They characterise knowledge that a student has but fails to use as ‘‘fragile’’.
Fragile knowledge may take a number of forms: missing (forgotten), inert
(learned but not used), or misplaced (learned but used inappropriately).
Strategies can also be fragile, with students failing to trace/ track code even
when aware of the process (see also Davies, 1993; Gilmore, 1990b).
Several studies that focus on novices’ understanding and use of specific kinds
of language feature are presented in Soloway and Spohrer (1989). Samurçay
(1989) explores the concept of a variable, showing that initialisation
is a complex cognitive operation with reading (external input) better
understood than assignment (see also du Boulay, 1989). Updating and testing
variables seemed to be of roughly equivalent complexity, and were better
understood than initialisation. Hoc (1989) showed that certain kinds of
abstractions can lead to errors in the use of conditional tests. In a study of bugs in
simple Pascal programs (which read some data and perform some processing
in the mainline) Spohrer et al. (1989) found that bugs associated with loops
and conditionals were much more common that those associated with input,

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

30
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

output, initialisation, update, syntax/block structure, and overall planning.
Soloway, Bonar, and Ehrlich (1989) studied the use of loops, noting that novices
preferred a ‘‘read then process’’ rather than a ‘‘process then read’’ strategy. du
Boulay (1989) notes that ‘‘for’’ loops are problematic because novices often
fail to understand that ‘‘behind the scenes’’ the loop control variable is being
updated. ‘‘This is another example of the ubiquitous problem of hidden,
internal changes causing problems’’ (du Boulay, 1989, p. 295). du Boulay also
notes problems that can arise with the use of arrays, such as confusing an
array subscript with the value stored. Kahney (1989) showed that users have a
variety of (mostly incorrect) approximate models of recursion. Similarly,
Kessler and Anderson (1989) found that novices were more successful at
writing recursive functions after learning about iterative functions, but not
vice versa. Issues relating to flow of control were found to be more difficult
than other kinds of processing. Many of the points summarised here are also

addressed by Rogalski and Samurçay (1990). Détienne (1997)
summarises some problems that are specific to OO programmers,
including a tendency to think that instance objects are created automatically,
and misconceptions about inheritance.
As well as these language feature specific problems there are more general
misconceptions. ‘‘The notion of the system making sense of the program
according to its own very rigid rules is a crucial idea for learner to grasp’’ (du
Boulay, 1989, p. 287). In this respect anthropomorphism (‘‘it was trying
to .. .’’, ‘‘it thought you meant .. .’’) can be misleading. Similarly, novices
know how they intend a given piece of code to be interpreted, so they tend to
assume that the computer will interpret it in the same way (Spohrer &
Soloway, 1989). Although prior knowledge is of course an essential starting
point, there are times when analogies applied to the new task of programming
can also be misleading. Bonar and Soloway (1989) develop this point,
exploring the role of existing knowledge (e.g., of step-by-step processes),
natural language, and analogies based on these domains as a source of error.
For example, some novices expect, based on a natural language interpretation,
that the condition in a ‘‘while’’ loop applies continuously rather than being
tested once per iteration.
The underlying cause of the problems faced by novices is their lack of (or
fragile) programming specific knowledge and strategies. While the specific
problems noted above are significant, some have suggested that this lack
manifests itself primarily as problems with basic planning and design. Spohrer

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

31
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

and Soloway (1989), for example, collected data in a semester long
introductory Pascal programming course (taught at Yale University).
Discussing two ‘‘common perceptions’’ of bugs, the authors claim that:
Our empirical study leads us to argue that (1) yes, a few bug types account for
a large percentage of program bugs, and (2) no, misconceptions about
language constructs do not seem to be as widespread or as troublesome as is
generally believed. Rather, many bugs arise as a result of plan composition
problems – difficulties in putting the pieces of the program together [.. .] – and
not as a result of construct-based problems, which are misconceptions about
language constructs. (Spohrer & Soloway, 1989, p. 401)
Spohrer and Soloway describe nine kinds of plan composition problem (some
of which we have already touched on above):
Summarisation problem. Only the primary function of a plan is consid- ered,
implications and secondary aspects may be ignored.
Optimisation problem. Optimisation may be attempted inappropriately.
Previous-experience problem. Prior experience may be applied inappro-
priately.
Specialisation problem. Abstract plans may not be adapted to specific
situations.
Natural-language problem. Inappropriate analogies may be drawn from
natural language.
Interpretation problem. ‘‘Implicit specifications’’ can be left out, or ‘‘filled in’’
only when appropriate plans can be easily retrieved.
Boundary problem. When adapting a plan to specific situations boundary
points may be set inappropriately.
Unexpected cases problem. Uncommon, unlikely, and boundary cases may
not be considered.
Cognitive load problem. Minor but significant parts of plans may be
omitted, or plan interactions overlooked.
Spohrer et al. (1989) found a common source of error was ‘‘merged plans’’,
where the same piece of code is intended by the programmer to implement
two plans/processes which should have been implemented separately. Often one
crucial subplan or step is omitted.
While specific problem taxonomies could be debated (and are likely
influenced by language, task, and context) the underlying claim is important –
basic program planning rather than specific language features is the main
source of difficulty. A similar conclusion is reached by Winslow (1996):

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

32
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

[An important point] is the large number of studies concluding that novice
programmers know the syntax and semantics of individual statements, but they
do not know how to combine these features into valid programs. Even when they
know how to solve the problems by hand, they have trouble translating the
hand solution into an equivalent computer program. (Winslow, 1996, p. 17)
Winslow focuses specifically on the creation of a program rather than the
underlying problem solving, noting, for example, that most undergraduates can
average a list of numbers, but less than half of them can write a loop to do the
same operations. Rist (1995) makes the same point in a different way,
summarising the concept of a ‘‘focus’’ (also known as a key or beacon). A focus is
the single step (or line) which is the core operation in a plan (or program).
Focal design [.. .] occurs when a problem is decomposed into the simplest and
most basic action and object that defines the focus of the solution, and then the
rest of the solution is built around the focus. Essentially, the focus is where you
break out of theory into action, out of the abstract into the concrete level of
design. (Rist, 1995, p. 537)
To restate the above discussion in these terms, the most basic manifestation of
novices’ lack of relevant knowledge and strategies is evident in problems with
focal design.
Finally, Rogalski and Samurçay (1990) make an interesting claim (which we
have not seen repeated elsewhere).
Studies in the field and pedagogical work both indicate that the processing
dimension involved in programming acquisition is mastered best. The
representation dimension related to data structuring and problem modeling is
the ‘poor relation’ of programming tasks. (Rogalski & Samurçay, 1990, p.
171)
This would be an interesting topic to pursue further. It may not be the case that
the ‘‘processing dimension’’ is any easier to master, but rather that problem
modelling and representation are logically prior, so that novices who are
experiencing problems manifest them at that early stage, while those who are
working successfully progress through both representation and processing
tasks.

Kinds of Novice
While much attention has been paid to the study of novices versus experts, it is
clear that it is also useful to explore the topic of novices versus novices. A
group of novices learning to program will typically contain a huge range of

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

33
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

backgrounds, abilities, and levels of motivation, and also typically result in a
huge range of unsuccessful to successful outcomes. As we might expect,
measures of general intelligence are related to success at learning to program
(Mayer et al., 1989). As noted above (Section 2.5), however, Bishop-Clark
(1995) found no clear trends emerging from a review of studies of the effects
of cognitive style and personality on programming. Rountree, Rountree, and
Robins (2002) found that from a survey (covering factors such as background,
intended major, expected workload and so on) of students in an introductory
programming paper, the most reliable predictor of success was the grade that the
student expected to achieve. This and other results showed that students in
general have a reasonably accurate sense of how they are likely to do within
the first 2 weeks of the course.
Despite the fact that it is apparently not measured by or significant in the
cognitive style and personality tests used so far, different kinds of char-
acteristic behaviour are certainly evident when observing novices in the
process of writing programs. Perkins et al. (1989) distinguish between two
main kinds, ‘‘stoppers’’ and ‘‘movers’’. When confronted with a problem or a
lack of a clear direction to proceed, stoppers (as the name implies) simply
stop. ‘‘They appear to abandon all hope of solving the problem on their own’’
(Perkins et al., 1989, p. 265). Student’s attitudes to mistakes/errors are
important. Those who are frustrated by or have a negative emotional reaction to
errors are likely to become stoppers. Movers are students who keep trying,
experimenting, modifying their code. Movers can use feedback about errors
effectively, and have the potential to solve the current problem and progress.
However, extreme movers, ‘‘tinkerers’’, who are not able to trace/track their
program, can be making changes more or less at random, and like stoppers
have little effective chance of progressing.
NOVICE LEARNING AND TEACHING IN CS1

Goals and Progress
Most novices learn to program via formal instruction such as a computer science
introductory course (‘‘CS1’’). This sets the topic of novice learning and teaching in
the context of an extensive educational literature. Current theory suggests a
focus not on the instructor teaching, but on the student learning, and effective
communication between teacher and student. The goal is to foster ‘‘deep’’
learning of principles and skills, and to create independent, reflective, life-long
learners. The methods involve clearly stated course goals and objectives,

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

34
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

stimulating the students’ interest and involvement with the course, actively
engaging students with the course material, and appropriate assessment and
feedback. For a good introduction see, for example, Ramsden (1992).
Teaching standards clearly influence the outcomes of courses that teach
programming (Linn & Dalbey, 1989). Linn and Dalbey propose a ‘‘chain of
cognitive accomplishments’’ that should arise from ideal computer program-
ming instruction. This chain starts with the features of the language being
taught. The second link is design skills, including templates (schemas/plans),
and the procedural skills of planning, testing and reformulating code. The
third link is problem-solving skills, knowledge and strategies (including the
use of the procedural skills) abstracted from the specific language taught that
can be applied to new languages and situations. This chain of accomplish-
ments forms a good summary of what could be meant by deep learning in
introductory programming.
Given the goals of deep learning an observation that recurs with depressing
regularity, both anecdotally and in the literature, is that the average student does
not make much progress in an introductory programming course. Exploring
roughly semester long courses in middle schools, Linn and Dalbey note that few
students get beyond the language features link of the chain, and conclude that
‘‘the majority of students made very limited progress in programming’’ (Linn &
Dalbey, 1989, p. 74). A study of students with 2 years of programming
instruction (Kurland et al., 1989) concludes on a similar note, that ‘‘many
students had only a rudimentary understanding of programming’’. Winslow
observes that ‘‘One wonders [.. .] about teaching sophisticated material to CS1
students when study after study has shown that they do not understand basic
loops .. .’’ (Winslow, 1996, p. 21). Soloway, Ehrlich, Bonar, and Greenspan
(1983), for example, studied students who had completed a single semester
programming course. When asked to write a loop which calculated an average
(excluding a sentinel value signalling the end of input) only 38% were able to
complete the task correctly (even when syntax errors were ignored).

Course Design and Teaching Methods
For the moment we will assume a conventionally structured course based on
lectures and practical laboratory work, and a conventional curriculum focused
largely on knowledge – particularly relating to the features of the language
being taught and how to use them. Why is it that most introductory
programming courses and textbooks adopt this approach? Obvious reasons

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

35
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

include the important role of such knowledge in programming and the sheer
volume and detail of language related features that can be covered. More
subtly, as Brooks (1990) points out, while the use of strategies strongly
impacts on the final program that is produced, the strategies themselves cannot
(in most cases) be deduced from the final form of the program. Finished
example programs are rich sources of information about the language which
can be presented, analysed and discussed. The strategies that created those
programs, however, are much harder to make explicit.
Ideally course design and teaching would take place in the context of
familiarity with the key issues that have been identified in the literature. The
most basic factor, especially given the observations regarding the limited
progress made by novices in introductory courses, is that a CS1 course should be
realistic in its expectations and systematic in its development: ‘‘Good pedagogy
requires the instructor to keep initial facts, models and rules simple, and only
expand and refine them as the student gains experience’’ (Winslow, 1996, p. 21).
du Boulay et al. (1989) make a case for the use of simple, specially designed
teaching languages. In many cases the role of the course in the broader teaching
curriculum may rule this out as an option, and complex ‘‘real’’ languages are
typically used.
A major recommendation to emerge from the literature is that instruction
should focus not only on the learning of new language features, but also on the
combination and use of those features, especially the underlying issue of basic
program design.
From our experience [.. .] we conclude that students are not given sufficient
instruction in how to ‘‘put the pieces together.’’ Focusing explicitly on specific
strategies for carrying out the coordination and integration of the goals and
plans that underlie program code may help to reverse this trend. (Spohrer &
Soloway, 1989, pp. 412–413)
A further important suggestion is to address the kinds of mental models which
underlie programming:
Models are crucial to building understanding. Models of control, data
structures and data representation, program design and problem domain are all
important. If the instructor omits them, the students will make up their own
models of dubious quality. (Winslow, 1996, p. 21)
Two specific points have been tested by Mayer (1989). Mayer showed that
students supplied with a notional machine model (which Mayer called a
‘‘concrete model’’) were better at solving some kinds of problem than students

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

36
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

without the model. Mayer also showed, as we would predict from the general
educational literature, that students who are encouraged to actively engage and
explore programming related information (by paraphrasing/restating it in their
own words) performed better at problem solving and creative transfer (see
also Hoc & Nguyen-Xuan, 1990).
With particular reference to OO programming Wiedenbeck and Ramalingam
(1999, p. 84) summarise the pedagogical implications of their study. The
authors suggest that the OO style aids the understanding of program function
for small programs, but that – especially as programs grow in size – particular
attention should be paid to control flow and data flow in teaching, and the
use of aids to comprehension.
The laboratory based programming tasks that are part of a typical CS1 course
have some pedagogically useful features. Each one can form a ‘‘case based’’
problem solving session. The feedback supplied by compilers and other tools is
immediate, consistent, and (ideally) detailed and informative. The reinforce-
ment and encouragement derived from creating a working program can be very
powerful. In this context students can work and learn on their own and at their
own pace, and ‘‘programming can be a rich source of problem-solving
experience’’ (Linn & Dalbey, 1989, p. 78). Working on easily accessible tasks,
especially programs with graphical and animated output, can be stimulating and
motivating for students. However such tasks should still be based on and
emphasise the programming principles that underlie the effects (Kurland et al.,
1989). Especially in the context of practical tasks, paired or collaborative work
and ‘‘peer learning’’ has also been shown to be beneficial (Van Gorp & Grissom,
2001; Williams, Wiebe, Yang, Ferzli, & Miller, 2002; Wills, Deremer,
McCauley, & Null, 1999).
Soloway and Spohrer (1989, p. 417) summarise several suggestions relating to
the design of development environments/programming tools that support
novices. These include: the use of ‘‘graphical languages’’ to make control flow
explicit; a simple underlying machine model; short, simple and consistent
naming conventions; graphical animation of program states (with no
‘‘hidden’’ actions or states); design principles based on spatial metaphors;
and the gradual withdrawal of initial supports and restrictions. Anderson and
colleagues (Anderson, Boyle, Corbett, & Lewis, 1990; Anderson, Boyle, Farrell,
& Reiser, 1987; Anderson, Conrad, & Corbett, 1989) have developed
an extensive and effective intelligent tutoring system for LISP within the

ACTω model of learning and cognition (Anderson, 1983, 1990).

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

37
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

Finally for a broad perspective, offered in respect to teaching Java but which
could equally apply to any kind of educational situation, Burton suggests that
teachers keep in mind the distinctions between ‘‘what actually gets taught;
what we think is getting taught; what we feel we’d like to teach; what would
actually make a difference’’ (Burton, 1998, p. 54).

Alternative Methods and Curricula
Some recommendations regarding the teaching of programming suggest a
fundamental change in the focus of CS1 teaching, to the extent that if fully
implemented they would represent alternative kinds of curricula.
An important recommendation noted above is that instruction should
address the underlying issue of basic program design, in particular the use
of the schemas/plans which are the central feature of program- ming
knowledge representation. Such an emphasis could be accommodated within
a conventional curriculum, or could form the basis of an alternative approach.
Explicit naming and teaching of basic schemata [.. .] may become part of
computer programming curricula. (Mayer, 1989, p. 156)
. . . students should be made aware of such concepts as goals and plans, and such
composition statements as abutment and merging [.. .]. We are suggesting that
students be given a whole new vocabulary for learning how to construct
programs. (Spohrer & Soloway, 1989, p. 413)
Soloway and Ehrlich (1984) explored this approach as a basis for teaching
Pascal. Similar ideas regarding the identification and teaching of solutions to
particular classes of programming problems can be found in the OO
‘‘patterns’’ literature, see, for example, Gamma, Helm, Johnson, and Vlissides
(1994). For an analysis and overview of the use of pattern languages for
teaching see Fincher (1999a), and for two recent descriptions of courses based on
patterns see Reed (1998) and Proulx (2000).
Is it effective to teach schemas directly to novices, rather than expect them to
emerge from examples and experience? Some general support is provided
from a review of mechanisms of skill transfer (see, e.g. Robins, 1996), but
transfer and analogical mechanisms are complex. Deep, structural similarities are
often not identified and exploited. While supporting the idea of teaching
schemas Perkins et al. (1989) also suggest that alternative methods may be
more generally effective:
Instruction designed to foster bootstrap learning but not providing an explicit
schematic repertoire might produce competent and flexible programmers, and

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

38
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

might yield the broad cognitive ripple effects some advocates of
programming instruction have hoped for. (Perkins et al., 1989, p. 277)
From a theoretical perspective, in some accounts of learning and knowledge
consolidation such as Anderson’s influential ACT family of models (Anderson,
1976, 1983, 1993), abstract representations of knowledge cannot be learned
directly. They can be only learned ‘‘by doing’’, that is, by practicing the
operations on which they are based.
Problem solving has also been identified as a possible foundation for teaching
programming. Fincher (1999b) argues in favour of problem solving based
teaching, and categorises and briefly reviews the related ‘‘syntax free’’,
‘‘literacy’’ and ‘‘computation-as-interaction’’ approaches. Deek et al. (1998)
describe a first year computer science course based on a problem solving
model, where language features are introduced only in the context of the
students’ solutions to specific problems. In this environment students in the
problem solving stream generally rated their own abilities and confidence
slightly more highly than did students in the control stream (receiving
traditional instruction). Students in the problem solving stream also achieved a
significantly better grade for the course (with e.g. an increase from 5% to over
25% of the students attaining ‘‘A’’ grades). An extensive discussion of the
practical issues involved in problem based learning, a description of problem
based learning courses, and a 3-year longitudinal follow-up of students is
described in Kay et al. (2000).
Like schema/pattern based methods the problem solving based approaches
clearly have promise. However as noted (Section 3.3) by for example Winslow
(1996) and Rist (1995), problem solving is necessary, but not sufficient, for
programming. The main difficulty faced by novices is expressing problem
solutions as programs. Thus the coverage of language features and how to use
and combine them must remain an important focus.
For an influential and completely different perspective on the art of teaching
programming Dijkstra (1989), in the evocatively titled ‘‘On the cruelty of
really teaching computer science’’, argues that anthropomorphic metaphors,
graphical programming environments and the like are misleading and represent
an unacceptable ‘‘dumbing down’’ of the process. Dijkstra proposes a very
different kind of curriculum based on mathematical foundations such as
predicate calculus and Boolean algebra, and establishing formal proofs of
program correctness. (A lively debate ensues in the subsequent peer
commentary.)

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

39
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

While it is clear that alternatives to conventional curricula show promise, it is
also the case that none of them has come to dominate the theory or practice of
programming pedagogy. Most textbooks, for example, are still based on a
conventional curriculum model. In future work we intend to review and assess
the literature on these alternative methods and their effectiveness.

DISCUSSION

Summary and Implications
In this section we briefly summarise the material reviewed above, and
highlight some of the most important points and practical implications for
teachers. The summary follows the structure of the paper (hence e.g. ‘‘2.3:’’
refers to Section 2.3) and the implications noted here can be directly supported
by the literature reviewed in the relevant section.
The psychological/educational literature relating to programming is large and
complex. A number of trends can be identified. 2.1: The first is a distinction
between novices and experts, with an emphasis on the many deficits of
novices. 2.2: The second trend is the distinction between knowledge and
strategies. An important though ill-defined concept is the schema/plan as the
most important building block of programming knowledge. An important but
open question is why and how different strategies emerge, and how these are
related to underlying knowledge. 2.3: The third trend is the distinction
between program comprehension and generation, with models of the former
being particularly numerous. When generating programs novices must create
their program plans (experts can often retrieve them), hence explicit atten-
tion (in course design and teaching) to planning and problem solving may
be beneficial. Clearly these aspects of programming are related, with
comprehension playing an important role in supporting generation, but there is
some suggestion that individuals’ abilities with respect to these tasks may not
be well correlated. This has implications for course design and assessment –
comprehension based assessment tasks may not be a good measure of the
ability to write programs. 2.4: The fourth, recent trend, is a comparison of OO
and procedural programming styles. There is little support for the claim that
the OO approach allows for significantly easier modelling of problem
domains, with both OO design and traditional procedural factors identified as
significant. Hence even in OO based courses it may be necessary, particularly

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

40
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

for weaker students, to devote particular attention to procedural concepts, flow
of control, flow of data, and design (see also 4.2).
In this literature the majority of studies focus on program comprehension,
often in experts, and typically based on experimental studies. Our focus on this
paper has been on novices, particularly novice program generation, and in the
process by which this is taught and learned. 3.1: It is clear that novice
programmers face a very difficult task. Learning to program involves
acquiring complex new knowledge and related strategies and practical skills.
Hence initial course material should be simple, and this should be expanded
on systematically as the students gain experience (see also 4.2). 3.2: Novice
programmers must learn to develop models of the problem domain, the
notional machine, and the desired program, and also develop tracking and
debugging skills so as to model and correct their programs. Explicitly
identifying and addressing each of these topics may be beneficial. In practical/
laboratory based work it may be useful for instructors to particularly attend to
change episodes (where students alter their code), as these may be rich in
information about the students’ models, plans and goals. 3.3: Novices
typically have many deficits in both knowledge and strategies. Familiarity
with the specific issues identified in the literature may aid course design.
Loops, conditionals, arrays and recursion have all been identified as language
features that are especially problematic, and could benefit from particular
attention. Several authors have suggested, however, that the most important
deficits relate to the underlying issues of problem solving, design, and
expressing a solution/design as an actual program. The frequent practical
programming exercises that are a feature of most programming courses are
almost certainly central in addressing this issue, and it may also help to
encourage in practical work (e.g., in the design of laboratory workbooks and
the like) the use of an explicit software development method to give some
structure to the process.4 Novice’s problems exacerbated by the fact that
where knowledge and strategies are learned, they are often fragile (not
applied, or misapplied). Further research may be useful here to ascertain
whether this is a deficit in accessing learned material, recognising the
situations in which it is appropriate, or having the confidence to use it/
experiment. 3.4: Different kinds of characteristic novice behaviour can be
identified, including movers, stoppers, and tinkerers. Where such distinctions
are thought to apply to a given student, this may help to effectively target the
assistance given.

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

41
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

With respect to teaching novices in CS1 type courses the goal is to foster
deep learning in students. 4.1: Many students make very little progress in a
first programming course. 4.2: Various suggestions regarding course design
and delivery have been made in the literature. Most of these, such as paying
particular attention to issues of basic design, have already arisen/been noted in
the summary above. Other suggestions relate to the design of development
environments/programming tools for teaching novices. It may be helpful to
make aspects of control flow and data flow explicit, and avoid ‘‘hidden’’
actions or states. 4.3: Finally, course designs based on explicitly teaching
schemas, problem solving, and mathematical foundations have been
proposed.

A Programming Framework
One summary of topics relating to novice programming makes explicit the
implied relationships between many of the issues. This structural summary is
outlined in the ‘‘programming framework’’ shown in Figure 1.
The framework highlights as one dimension the individual attributes of the
programmer, namely their knowledge, strategies, and mental models. The
fundamental role of knowledge and strategies was discussed in Section 2.2.
The importance of various mental models (e.g., of the notional machine, and
of the program) was noted in Section 3.2. The second dimension of the
framework separates the phases of designing, generating and evaluating a
program. Issues relating to design/planning were reviewed in Section 3.3. The
process of program generation is of course central, as described in Sections
2.3 and 3.3. The important role of evaluation (comprehension, tracking,
debugging) was noted in Sections 2.3 and 3.2. Combining the dimensions, the

overall framework emphasises the fact that the different kinds of individual
attributes are not single ‘‘undifferentiated’’ constructs, but are brought to bear
(perhaps with varying efficacy) at different stages of the programming
process.
Ideally, teaching and learning would take place in the context of familiarity with
the main issues that have been identified in the literature. We suggest that any
compact summary, such as for example the framework proposed above, could
have a variety of uses. For example, it may be helpful during the process of
course design to highlight factors which might be incorporated into the
course content, delivery and assessment. It may be useful to make it available

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

42
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

to students, both as an aid to identifying the learning objectives of the course
(which has many advantages, see, e.g., Ramsden, 1992) and as an aid to
‘‘metalearning’’ or ‘‘learning about learning’’ (see, e.g., Vilalta & Drissi, 2002).
A summary may also be useful to teachers/teaching assistants involved in
practical/laboratory work, as an aid to diagnosing the problems of and
assisting individual students. For example, it may be helpful to identify the
fact that a given student has a good knowledge of design principles but poor
strategies for applying them, or perhaps good strategies for design but poor
strategies for debugging/testing. For this latter purpose in particular, any
diagnostic tool to be used in an actual laboratory situation will need to be rich
enough to be useful, but simple enough to be manageable.
Comments and Future Work
In this final section we make some more speculative observations, and note
possible topics for future work. These comments are based on our experience of
the review presented above, and of our own teaching and recent study of the
programming course that we teach (Rountree et al., 2002).
From our point of view as teachers there is a distinction which is much more
important than the one between novices and experts which has received so much
attention in the literature. This is the distinction between effective and ineffective
novices. Effective novices are those that learn, without excessive effort or
assistance, to program. Ineffective novices are those that do not learn, or do so
only after inordinate effort and personal attention. It may be productive,
in an introductory programming course, to explicitly focus on trying to create
and foster effective novices. In other words, rather than focusing exclusively
on the difficult end product of programming knowledge, it may be useful to
focus at least in part on the enabling step of functioning as an effective novice.
What underlying properties make a novice effective? How can we best turn
ineffective novices into effective ones? A deeper understanding of both kinds
of novices is required. The range of potentially relevant factors includes
motivation, confidence or emotional responses, and aspects of general or
specific knowledge, strategies, or mental models.
As a first step towards addressing these questions, we further suggest that the
most significant differences between effective and ineffective novices relate
to strategies rather than knowledge. Language related knowledge is available
from many sources, and courses and textbooks are typically designed to
introduce this knowledge in a structured way. The strategies for accessing this
knowledge and applying it to program comprehension and generation,

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

43
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

however, are crucial to the learning outcome, but typically receive much less
attention. What are the strategies employed by effective novices, how do they
relate to their knowledge and their relevant mental models, and can these
strategies be taught to ineffective novices?
Others have also suggested that strategies are central. Perkins et al. note that
‘‘certain broad attitudes and conducts’’ characterise unsuccessful novices:

. . . behaviors such as stopping, neglect of close tracking, casual tinkering, and
neglect of or systematic errors in breaking problems down. (Perkins et al.,
1989, p. 277)
These are all deficits in strategy. Davies states that:
Even in the case of novice programmers we have seen that the strategic
elements of programming skill may, in some cases, be of greater significance
than knowledge-based components. (Davies, 1993, p. 265)
We would go so far as to say especially in the case of novice programmers, and in
most rather than some cases. Given that knowledge is (assumed to be)
uniformly low, it is their preexisting strategies that initially distinguish
effective and ineffective novices.
As novices do not have the specialised knowledge and skills of the expert, one
might expect their performance to be largely function of how well they can bring
their skills from other areas to bear. (Sheil, 1981, p. 119)
. . . youngsters vary widely in their progress, succeeding only to the extent that
they happen to bring with them the characteristics that make them good
bootstrap learners in the programming context. (Perkins et al., 1989, pp. 277–
278)
Differences in initial strategies will interact with other factors, such as
motivation and the capacity to acquire language related knowledge, to rapidly
separate novices along the effective-ineffective continuum.
What are the implications of this view? We suggest that programming
strategies should receive more and more explicit attention in introductory
programming courses. One way to address this would be to introduce many
examples of programs as they are being developed (perhaps ‘‘live’’ in
lectures), discussing the strategies used as part of this process.5 As well as
needing to know more about effective an ineffective novice, we need to know
how to foster effective strategies in all novices through course design and
delivery. We need to motivate students, engage them in the process, and make
them want to learn to be effective programmers.

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

44
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

In future work we intend to further explore these issues and to focus on the topic
of novice strategies. Why do many novices, even when aware of the
techniques and encouraged to use them, fail to plan their programs? What are
the main reasons why many students become so consistently stuck, and can
these be diagnosed and addressed? What is the relationship between the

5
As noted above (Section 4.2), example programs are sources of programming knowledge, but

the strategies that go into creating a program are not usually visible in the final product.

ability to generate and the ability to comprehend a program? Are strategy
deficits generic or related to an inability to construct or maintain a mental
model of the program? What kind of support will best address the needs of
each kind of novice? How can we present language related knowledge so as to
best develop and foster appropriate strategies and models? Perhaps one of the
most important aspects to be explored is why relevant knowledge and
strategies are often known but not applied. Finally, of course, the underlying
issue is how best to use the answers to such questions to better teach and foster
the learning of novice programmers.

ACKNOWLEDGMENTS

This work has been supported by internal University of Otago Research into Teaching grants.
We are also grateful for the support and suggestions of our many colleagues. Special thanks to
Richard O’Keefe, and to other members of the COMP103 teaching and support team including
Natalie Adams, Michael Atkinson, Tracey Cuthbertson, Sandy Garner, Parviz Najafi and many
other committed and enthusiastic lab demonstrators.

REFERENCES

Anderson, J.R. (1976). Language, memory and thought. Hillsdale, NJ:
Erlbaum Associates. Anderson, J.R. (1983). The architecture of cognition.
Cambridge, MA: Harvard University
Press.
Anderson, J.R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.
Anderson, J.R. (2000). Cognitive psychology and its implications (5th ed.).
New York: Worth Publishing.
Anderson, J.R., Boyle, C., Corbett, A., & Lewis, M.W. (1990). Cognitive
modeling and intelligent tutoring. Artificial Intelligence, 42, 7–49.
Anderson, J.R., Boyle, C., Farrell, R., & Reiser, B. (1987). Cognitive principles

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

45
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

in the design of computer tutors. In P. Morris (Ed.), Modeling cognition (pp.
93–134). NY: Wiley.
Anderson, J.R., Conrad, F.G., & Corbett, A.T. (1989). Skill acquisition and
the LISP tutor.
Cognitive Science, 13, 467–505.
Bishop-Clark, C. (1995). Cognitive style, personality, and computer
programming. Computers in Human Behavior, 11, 241–260.
Boehm, B.W. (1981). Software Engineering Economics. Englewood Cliffs,
NJ: Prentice-Hall. Bonar, J., & Soloway, E. (1989). Preprogramming
knowledge: A major source of misconcep- tions in novice programmers. In
E. Soloway & J.C. Spohrer (Eds.), Studying the novice
programmer (pp. 324–353). Hillsdale, NJ: Lawrence Erlbaum.
Brooks, F.P., Jr. (1995). The mythical man-month: Essays on software
engineering anniversary edition. Reading, MA: Addison-Wesley.
Brooks, R.E. (1977). Towards a theory of the cognitive processes in computer
programming.
International Journal of Man-Machine Studies, 9, 737–751.
Brooks, R.E. (1983). Towards a theory of the comprehension of
computer programs.
International Journal of Man-Machine Studies, 18, 543–554.
Brooks, R.E. (1990). Categories of programming knowledge and their
application. Interna- tional Journal of Man-Machine Studies, 33, 241–246.
Burkhardt, J., Détienne, F., & Wiedenbeck, S. (1997). Mental representations
constructed by experts and novices in object-oriented program
comprehension. In S. Howard,
J. Hammond, & G. Lindgaard (Eds.), Human-computer interaction:

INTERACT’97

(pp. 339–346). London: Chapman & Hall.
Burton, P. (1998). Kinds of language, kinds of learning. ACM SIGPLAN

Notices, 33, 53–61. Can~as, J.J., Bajo, T., & Gonzalvo, P. (1994). Mental
models and computer programming.
International Journal of Human-Computer Studies, 40, 795–811.
Corritore, C.L., & Wiedenbeck, S. (1991). What do novices learn during
program comprehension? International Journal of Human-Computer

Interaction, 3, 199–222.
Davies, S.P. (1993). Models and theories of programming strategy.
International Journal of Man-Machine Studies, 39, 237–267.

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

46
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

Deek, F.P., Kimmel, H., & McHugh, J.A. (1998). Pedagogical changes in the
delivery of the first-course in computer science: Problem solving, then
programming. Journal of Engineering Education, 87, 313–320.

Détienne, F. (1990). Expert programming knowledge: A schema based
approach. In J.M. Hoc,
T.R.G. Green, R. Samurçay, & D.J. Gillmore (Eds.), Psychology of

programming

(pp. 205–222). London: Academic Press.
Dijkstra, E.W. (1989). On the cruelty of really teaching computer science.
Communications of the ACM, 32, 1398–1404.
Dreyfus, H., & Dreyfus, S. (1986). Mind over machine: The power of human

intuition and expertise in the era of the computer. New York: Free Press.
du Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway &
J.C. Spohrer (Eds.), (pp. 283–299). Hillsdale, NJ: Lawrence Erlbaum.
du Boulay, B., O’Shea, T., & Monk, J. (1989). The black box inside the glass
box: presenting computing concepts to novices. In E. Soloway & J.C. Spohrer
(Eds.), Studying the novice programmer (pp. 431–446). Hillsdale, NJ: Lawrence
Erlbaum.
Fincher, S. (1999a). Analysis of design: An exploration of patterns and pattern
languages for pedagogy. Journal of Computers in Mathematics and Science

Teaching: Special Issue CS-ED Research, 18, 331–348.
Fincher, S. (1999b). What are we doing when we teach programming? 29th

ASEE/IEEE Frontiers in Education Conference, 12a4-1–12a4-5.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns:

Elements of reusable object-oriented software. Reading, MA: Addison-
Wesley.
Gilmore, D.J. (1990a). Methodological issues in the study of programming. In
J.M. Hoc, T.R.G. Green, R. Samurçay, & D.J. Gillmore (Eds.), Psychology of

programming (pp. 83–98). London: Academic Press.
Gilmore, D.J. (1990b). Expert programming knowledge: A strategic
approach. In J.M. Hoc,
T.R.G. Green, R. Samurçay, & D.J. Gillmore (Eds.), Psychology of

programming

(pp. 223–234). London: Academic Press.
Gilmore, D.J., & Green, T.R.G. (1984). Comprehension and recall of
miniature programs.
International Journal of Man-Machine Studies, 21, 31–48.

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

47
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

Gray, W.D., & Anderson, J.R. (1987). Change-episodes in coding: When and
how do programmers change their code? In G.M. Olson, S. Sheppard, & E.
Soloway (Eds.),
Empirical studies of programmers: Second Workshop (pp. 185–197).
Norwood, NJ: Ablex.
Green, T.R.G. (1990). Programming languages as information structures. In
J.M. Hoc, T.R.G. Green, R. Samurçay, & D.J. Gillmore (Eds.), Psychology of

programming (pp. 117–137). London: Academic Press.
Green, T.R.G., Bellamy, R.K.E., & Parker, J.M. (1987). Parsing and ginsarp: A
model of device use. In H.J. Bullinger & B. Shackel (Eds.), Proceedings

INTERACT’87. Amsterdam: Elsevier/North-Holland.
Guindon, R. (1990). Knowledge exploited by experts during software
systems design.
International Journal of Man-Machine Studies, 33, 182–279.
Hoc, J.M. (1989). Do we really have conditional statements in our brains? In E.
Soloway & J.C. Spohrer (Eds.), Studying the novice programmer (pp. 179–190).
Hillsdale, NJ: Lawrence Erlbaum.
Hoc, J.M., Green, T.R.G., Samurçay, R., & Gillmore, D.J. (Eds.). (1990).
Psychology of programming. London: Academic Press.
Hoc, J.M., & Nguyen-Xuan, A. (1990). Language semantics, mental models
and analogy. In
J.M. Hoc, T.R.G. Green, R. Samurçay, & D.J. Gillmore (Eds.),
Psychology of programming (pp. 139–156). London: Academic Press.
Humphrey, W.S. (1999). Introduction to the team software process. Reading,
MA: Addison- Wesley/Longman.
Johnson-Laird, P.N. (1983). Mental models. Cambridge: Cambridge
University Press. Kahney, H. (1989). What do novice programmers know
about recursion? In E. Soloway & J.C.
Spohrer (Eds.), Studying the novice programmer (pp. 209–228). Hillsdale, NJ:
Lawrence Erlbaum.
Kay, J., Barg, M., Fekete, A., Greening, T., Hollands, O., Kingston, J., &
Crawford, K. (2000). Problem-based learning for foundation computer
science courses. Computer Science Education, 10, 109–128.
Kessler, C.M., & Anderson, J.R. (1989). Learning flow of control: Recursive and
iterative procedures. In E. Soloway & J.C. Spohrer (Eds.), Studying the

novice programmer (pp. 229–260). Hillsdale, NJ: Lawrence Erlbaum.
Koffman, E., & Wolz, U. (2002). Problem solving with Java (2nd ed.). Reading,

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

48
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

MA: Addison- Wesley.
Kurland, D.M., Pea, R.D., Clement, C., & Mawby, R. (1989). A study of the
development of pro- gramming ability and thinking skills in high school
students. In E. Soloway & J.C. Spohrer (Eds.), Studying the novice programmer

(pp. 83–112). Hillsdale, NJ: Lawrence Erlbaum.
Letovsky, S. (1986). Cognitive processes in program comprehension. In E.
Soloway & S. Iyengar (Eds.), Empirical studies of programmers, First

Workshop (pp. 58–79). Norwood, NJ: Ablex.
Linn, M.C., & Dalbey, J. (1989). Cognitive consequences of programming
instruction. In E. Soloway & J.C. Spohrer (Eds.), Studying the novice

programmer (pp. 57–81). Hillsdale, NJ: Lawrence Erlbaum.
Mayer, R.E. (1989). The psychology of how novices learn computer
programming. In E. Soloway & J.C. Spohrer (Eds.), Studying the novice

programmer (pp. 129–159). Hillsdale, NJ: Lawrence Erlbaum.
Mayer, R.E., Dyck, J.L., & Vilberg, W. (1989). Learning to program and
learning to think: what’s the connection? In E. Soloway & J.C. Spohrer
(Eds.), Studying the novice programmer (pp. 113–124). Hillsdale, NJ:
Lawrence Erlbaum.
Mendelsohn, P., Green, T.R.G., & Brna, P. (1990). Programming languages in
education: The search for an easy start. In J.M. Hoc, T.R.G. Green, R.
Samurçay, & D.J. Gillmore (Eds.), Psychology of programming (pp. 175–199).
London: Academic Press.
Mills, H.D. (1993). Zero defect software: Cleanroom engineering. Advances in

Computers, 36, 1–41.
Ormerod, T. (1990). Human cognition and programming. In J.M. Hoc, T.R.G.
Green, R. Samurçay, & D.J. Gillmore (Eds.), Psychology of programming

(pp. 63–82). London: Academic Press.
Pennington, N. (1987a). Stimulus structures and mental representations in expert
comprehen- sion of computer programs. Cognitive Psychology, 19, 295–341.
Pennington, N. (1987b). Comprehension strategies in programming. In G.M.
Olson, S. Sheppard, & E. Soloway (Eds.), Empirical studies of programmers:

Second Workshop (pp. 100–112). Norwood, NJ: Ablex.
Pennington, N., & Grabowski, B. (1990). The tasks of programming. In J.M.
Hoc, T.R.G. Green, R. Samurçay, & D.J. Gillmore (Eds.), Psychology of

programming (pp. 45–62). London: Academic Press.
Perkins, D.N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1989).
Conditions of learning in novice programmers. In E. Soloway & J.C.

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

49
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

Spohrer (Eds.), Studying the novice programmer (pp. 261–279). Hillsdale,
NJ: Lawrence Erlbaum.
Perkins, D.N., & Martin, F. (1986). Fragile knowledge and neglected strategies
in novice programmers. In E. Soloway & S. Iyengar (Eds.), Empirical studies of

programmers, First Workshop (pp. 213–229). Norwood, NJ: Ablex.
Perlis, A., Sayward, F., & Shaw, M. (1981). Software metrics: An analysis

and evaluation.

Cambridge, MA: MIT Press.
Proulx, V.K. (2000). Programming patterns and design patterns in the
introductory computer science course. Proceedings of the thirty-first SIGCSE

technical symposium on computer science education (pp. 80–84). New York:
ACM Press.
Ramsden, P. (1992). Learning to teach in higher education. London:
Routledge.
Reed, D. (1998). Incorporating problem-solving patterns in CS1. SIGCSE

Bulletin, 30, 6–9. Rist, R.S. (1986a). Plans in programming: Definition,
demonstration and development. In E.
Soloway & S. Iyengar (Eds.), Empirical studies of programmers, First

Workshop.

Norwood, NJ: Ablex.
Rist, R.S. (1986b). Focus and learning in program design. Proceedings of the

8th Annual Con- ference of the Cognitive Science Society (pp. 371–380).
Hillsdale, NJ: Lawrence Erlbaum.
Rist, R.S. (1989). Schema creation in programming. Cognitive Science, 13,
389–414.
Rist, R.S. (1990). Variability in program design: The interaction of process
with knowledge.
International Journal of Man-Machine Studies, 33, 305–322.
Rist, R.S. (1995). Program structure and design. Cognitive Science, 19, 507–
562.
Rist, R.S. (1996). Teaching Eiffel as a first language. Journal of Object-Oriented

Programming, 9, 30–41.
Robins, A. (1996). Transfer in cognition. Connection Science, 8, 185–203.
Rogalski, J., & Samurçay, R. (1990). Acquisition of programming knowledge
and skills. In J.M. Hoc, T.R.G. Green, R. Samurçay, & D.J. Gillmore (Eds.),
Psychology of programming (pp. 157–174). London: Academic Press.
Rountree, N., Rountree, J., & Robins, A. (2002). Identifying the danger zones:

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

50
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

Predictors of success and failure in a CS1 course. Inroads (the SIGCSE

Bulletin), 34, 121–124.
Sackman, H. (1970). Man-computer problem solving. Princeton, NJ:
Auerbach.
Samurçay, R. (1989). The concept of variable in programming: Its meaning and
use in problem solving by novice programmers. In E. Soloway & J.C. Spohrer
(Eds.), Studying the novice programmer (pp. 161–178). Hillsdale, NJ:
Lawrence Erlbaum.
Sheil, B.A. (1981). The psychological study of programming. Computing

Surveys, 13, 101–120.
Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions in
programmer behavior: A model and experimental results. International

Journal of Computer and Information Sciences, 8, 219–238.
Soloway, E., Adelson, B., & Ehrlich, K. (1988). Knowledge and processes in the
comprehension of computer programs. In M. Chi, R. Glaser, & M. Farr (Eds.),
The nature of expertise (pp. 129–152). Hillsdale, NJ: Lawrence Erlbaum.
Soloway, E., Bonar, J., & Ehrlich, K. (1989). Cognitive strategies and looping
constructs. In E. Soloway & J.C. Spohrer (Eds.), Studying the novice

programmer (pp. 191–207). Hillsdale, NJ: Lawrence Erlbaum.
Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming
knowledge. IEEE Transactions on Software Engineering, SE-10, 595–609.
Soloway, E., Ehrlich, K., Bonar, J., & Greenspan, J. (1983). What do novices
know about programming? In B. Shneiderman & A. Badre (Eds.), Directions in

human-computer interactions (pp. 27–54). Norwood, NJ: Ablex.
Soloway, E., & Spohrer, J.C. (Eds.). (1989). Studying the novice

programmer. Hillsdale, NJ: Lawrence Erlbaum.
Spohrer, J.C., & Soloway, E. (1989). Novice mistakes: Are the folk wisdoms
correct? In E. Soloway & J.C. Spohrer (Eds.), Studying the novice

programmer (pp. 401–416). Hillsdale, NJ: Lawrence Erlbaum.
Spohrer, J.C., Soloway, E., & Pope, E. (1989). A goal/plan analysis of buggy
Pascal programs. In E. Soloway & J.C. Spohrer (Eds.), Studying the novice

programmer (pp. 355–399). Hillsdale, NJ: Lawrence Erlbaum.
van Dijk, T.A., & Kintsch, W. (1983). Strategies of discourse comprehension.

New York: Academic Press.
Van Gorp, M.J., & Grissom, S. (2001). An empirical evaluation of using
constructive classroom activities to teach introductory programming.
Computer Science Education, 11, 247–260.

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

51
Index in Cosmos
March 2022 Volume 12 ISSUE 1
UGC Approved Journal

Vilalta, R., & Drissi, Y. (2002). A perspective view and survey of meta-
learning. Artificial Intelligence Review, 18, 77–95.
Visser, W. (1990). More or less following a plan during design: Opportunistic
deviations in specification. International Journal of Man-Machine Studies, 33,
247–278.
Visser, W., & Hoc, J.M. (1990). Expert software design strategies. In J.M.
Hoc, T.R.G. Green,
R. Samurçay, & D.J. Gillmore (Eds.), Psychology of programming (pp.
235–250). London: Academic Press.
von Mayrhauser, A., & Vans, A.M. (1994). Program understanding – A survey

(Tech. Rep. CS- 94-120). Department of Computer Science, Colorado State
University.
Weinberg, G.M. (1971). The psychology of computer programming. New York:
Van Nostrand Reinhold.
Widowski, D., & Eyferth, K. (1986). Comprehending and recalling computer
programs of different structural and semantic complexity by experts and
novices. In H.P. Willumeit (Ed.), Human decision making and manual control

(pp. S.267–275). Amsterdam: North-Holland Elsevier.

http://www.pragatipublication.com/

International journal of basic and applied research

www.pragatipublication.com
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

52
Index in Cosmos
September 2022 Volume 12 ISSUE 1
UGC Approved Journal

Wiedenbeck, S., Fix, V., & Scholtz, J. (1993). Characteristics of the mental
representations of novice and expert programmers: An empirical study.
International Journal of Man- Machine Studies, 25, 697–709.
Wiedenbeck, S., & Ramalingam, V. (1999). Novice comprehension of small
programs written in the procedural and object-oriented styles. International

Journal of Human-Computer Studies, 51, 71–87.
Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C.L. (1999). A
comparison of the comprehension of object-oriented and procedural programs
by novice programmers. Interacting with Computers, 11, 255–282.
Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). In support of
pair programming in the introductory computer science course. Computer

Science Educa- tion, 12, 197–212.
Wills, C.E., Deremer, D., McCauley, R.A., & Null, L. (1999). Studying the use
of peer learning in the introductory computer science curriculum. Computer

Science Education, 9, 71–88.
Winslow, L.E. (1996). Programming pedagogy – A psychological overview.
SIGCSE Bulletin, 28, 17–22.

http://www.pragatipublication.com/

